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Defect-mediated melting of pentagonal quasicrystals 

Piali De? and Robert A Pelcovitsz 
t Department of Physics, University of Rhode Island, Kingston, RI 02881, USA 
$ Department of Physics, Brown University, Providence, RI 02912, USA 

Received 4 October 1988 

Abstract. The theories of dislocation- and disclination-mediated melting in two-dimensional 
systems, due to Kosterlitz, Thouless, Nelson, Halperin and Young, are applied to pentagonal 
quasicrystals. As in triangular lattices, the transition from solid to liquid occurs in two 
stages. First, dissociation of neutral pairs of dislocations causes a transition out of the 
low-temperature solid phase, which is characterised by algebraically decaying quasiperiodic 
translational order and long-range fivefold orientational order, into a ‘pentahedratic’ phase 
with exponentially decaying translational order and algebraically decaying orientational 
order. A second transition, caused by dissociation of pairs of disclinations, leads to an 
isotropic fluid whereby orientational order also decays exponentially. We present the 
relevant recusion relations and critical exponents. 

1. Introduction 

Quasicrystals are characterised by the presence of both quasiperiodic translational 
order and bond-orientational order (the latter associated with a non-crystallographic 
point group). As in conventional crystals, the destruction of these types of long-range 
order can occur through the generation of isolated topological defects. Specifically, 
dislocations destroy the translational order, while disclinations destroy the bond- 
orientational order. In a two-dimensional quasicrystal, an analytic study of its melting 
via the generation of defects can be carried out, in much the same way as was done 
for conventional crystals by Kosterlitz, Thouless, Nelson, Halperin and Young (Koster- 
litz and Thouless 1973, Nelson and Halperin 1979, Young 1979). In this paper we 
carry out this study for the case of pentagonal quasicrystals assuming that the phason 
field has reached equilibrium. For a discussion of the dynamics of the phason field 
see, e.g., Lubensky et a1 (1985) and Frenkel et a1 (1986). We find that melting occurs 
in two stages, as in the conventional case. Upon dissociation of neutral pairs of 
dislocations, the quasicrystal melts into a ‘pentahedratic’ phase with exponentially 
decaying translational order and algebraically decaying orientational order. A sub- 
sequent transition at higher temperature completes the melting into the liquid phase. 

Our analysis is based on the harmonic elastic energy density of a pentagonal 
quasicrystal (Levine et a1 1985, Bak 1985) 

where uij=f(aui /axj+auj/axi)  and wq =awi/axj. The fields u ( r )  and w ( r )  are the 
phonon and phason fields, respectively, which characterise the hydrodynamic modes 
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1168 P De and R A Pelcovits 

of the quasicrystal. In terms of these fields we can give a continuum description of 
the mass density p ( r )  of the quasicrystal by writing 

( 1 . 2 ~ )  

(1.2b) 

P ( r >  = c p c , ( r )  exp(iGfl* r )  

p c , , ( r )  = IPc,I exp(iGfl- f4r)+iG(3n)5 * w ( r ) )  

G" 

where the reciprocal lattice vectors Gfl are given by 

G , = G  cos---,sin- n = 0, 1, . . . 4  (1.3) ( 2? 2=n) 5 

and their reflections. The symbol ( 3 r ~ ) ~  denotes 3n mod 5 .  

Waller correlation function: 
The presence of quasiperiodic translational order can be assessed via the Debye- 

C c ( r )  = ( P c ( r ) P Z ( O ) ) .  (1.4) 
In a three-dimensional quasicrystal, this would tend to a finite value as r + CO; in two 
dimensions at low temperatures, as in conventional solids, CG decays algebraically. 
Specifically 

CG(r) -r -"G ( 1 . 5 ~ )  

where 

+ (PKI  - K X K ,  + (2P + A ) 7 * 1 1  (1.5b) 

and 7 is the golden mean. We obtained this result by evaluating (1.4) in the harmonic 
approximation (1.1) and neglecting dislocations and disclinations. 

Long-range orientational order (fivefold or, equivalently, tenfold in the present 
case) can be characterised in terms of the behaviour of the orientational correlation 
function: 

C,(r) = ( + ( r ) + * ( O ) )  ( 1 . 6 ~ )  

where 

+( r )  = exp( lOie( r ) )  

and, 

(1.6b) 

( 1 . 6 ~ )  

As we show in § 3, C, approaches a constant at large r, in the low-temperature phase 
where only bound dislocations and disclinations exist. 

In the remainder of this paper we consider the melting of the pentagonal quasicrys- 
tal, first (0 2) into the 'pentahedratic' phase characterised by CG( r )  - exp( - r /  6) and 
C , ( r )  - ?lo, and subsequently into the liquid phase (Q 3). 

2. Dislocation-unbinding transition 

2.1. Recursion relations 

In the presence of dislocations, the total harmonic energy of an elastic medium can 
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be written as a sum of two parts: 

HE= Ho+ H D  (2.1) 
where Ho is the energy due to the smoothly varying long-wavelength phonon and 
phason modes (i.e. of the form (l . l)) ,  and H D  is the energy due to the dislocations. 
Since the low-temperature solid phase is characterised by dislocations that only occur 
as neutral pairs, we consider a charge neutral distribution of dislocations such that 

d2r b(  r)  = 0. i 
Written in terms of iib, which are the components of the 8-vector whose first four 

components are the four smooth, or bare, phonon strains U; and the last four are the 
bare phason strains, Ho is of the form (De and Pelcovits 1987a) 

where a, is the minimum separation of the underlying lattice points and 
elements of an eight-rank elastic modulus tensor which we write as 

are the 

where 2, @, e', and B' are 
A b k l  = h S i j a k / + E L ( a i k a j / + a i I a j k )  (2.36) 

B b k l  = K 3 ( S ~ 1  - a i 2 ) ( a g a k l +  8~kajl - silajk) ( 2 . 3 ~ )  

C h k l  = R3(8kl  - S k Z ) ( a i j a k /  + a i k a j l  - a i l a j k )  (2.3d) 

D h k l  = K 1 8 i k a j I  + R 2 ( a v a k /  - a d j k )  (2.3e) 
and fi ,  h; E , ,  R2 and R3 are dimensionless quantities which equal the corresponding 
elastic constants multiplied by ai and divided by kBT 

'The dislocation contribution HD to the total elastic energy in (2.1) can be written 
as a sum over all neutral pairs of dislocations. For the general expression for the 
interaction energy of an arbitrary but charge-neutral distribution of dislocations in 
pentagonal quasicrystals, we refer the reader to our earlier work (De and Pelcovits 
1987a). Applying the general result to a neutral pair of dislocations separated by 
R = R(sin 8, cos e) ,  with Burgers' vectors *6, = *(b,Od,) where (Levine et al 1985) 

b, = R -sin ~, cos - 

we find that their interaction energy is 

, cos - (2.4) 5 ( 5  2.rrn 2Tn) 5 

R 
a 

1 
4T 

E€;=- { M ( b ,  - b, 
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where 

P D e  and R A Pelcovits 

( 2 . 5 6 )  

( 2 . 5 d )  

( 2 . 5 e )  

and y is the probability of finding a neutral pair of dislocations whose separation is 
a o ,  i.e. 

y = exp( - E,a$ kB T) ( 2 . V  1 
where E ,  is the core energy of a dislocation. 

The effect of dislocations in any elastic medium is to renormalise the bare elastic 
constants. Physically this corresponds to successive screening of pairs with large 
separations by pairs with smaller separations, thus leading to weaker elastic constants. 
Mathematically, renormalisation then implies that, in the presence of bound disloca- 
tions, the total elastic energy H E  has the same form as Ho in (2 .2) ,  except that the 
bare strain is replaced by the total strain Cij = C;+ Ci, where 6; is the singular strain 
due to dislocations (De and Pelcovits 1987a). Also the bare elastic tensor &k/ is 
replaced by the renormalised elastic tensor JR. 

The renormalised tensor & is the best determined in terms of its inverse, whose 
components are related to correlation functions of the total strains: 

where R is the area and 
c 

fig = d2rCg(r). J 
The subscript HE on the average indicates that the average is performed over the 
distribution exp( -PHE). Due to charge neutrality ( fii i i k / ) H D  = ( fii = 
( fii fi;JHD = 0. So we can rewrite ( 2 . 5 )  as 

where c$$/ is the inverse of the bare elastic tensor. Explicitly, the components &;;/ 

can be expressed as 

where the tensors 2, E, and fi are 
Iz: 

1 K: 

) a $ k /  
A A. .  = - 

(4p ( p-+ h) + 2 p  [ ii ( Iz] + Iz,) - 2K : I  

+(-+ 4p 2 p [ p ( R l  + K*) - 2 x 3  ) ( aiksjl  + a i / a j k )  

( 2 . 9 a )  

( 2 . 9 6 )  
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( 2 . 9 ~ )  

(2.9d) 

(2.9e) 

The components of the renormalised inverse tenor $&I will have the same form 
as $$ with all elastic constants replaced by their renormalised values. The difference 
between the renormalised and the bare values comes from the second term in (2.7), 
i.e. from the correlation of the singular strains due to interaction of the dislocations. 

Dislocations in quasicrystals are characterised by multivalued phonon and phason 
fields which satisfy 

d w = d  (2.10) f d u = b  f 
where the closed loop integration is performed around the core of the dislocation. 
One can construct solutions for U (  r )  and w( r )  such that the discontinuous changes in 
these values occur across a cutline, along which the strains will be singular. Interpreting 
these singular strains over all space, we find that U ;  will have components (De and 
Pelcovits 1987a) 

d 2 r u ~ = ~ ( b , , i & j m + b , , j q , ) R ,  (2.1 1 a )  

(2.11 b )  

where b,,i and dn,i represent the ith, with i = 1,2, components of the vectors defined 
in (2.4). 

Before we perform the averages ( fiijfikJHD in (2.8) over the interaction energy of 
an arbitrary, but charge-neutral, distribution of dislocations, we note that HD contains 
a small parameter: the fugacity y. The minimum configuration of dislocations allowed 
by neutrality is a pair whose probability exp( -pH,) is proportional to y 2  as is evident 
from ( 2 . 5 ~ ) .  The next possible smallest configuration is a set of five dislocations, with 
one each of the Burgers’ vectors belonging to the primitive set of five in (2.4); the 
probability of such a configuration is proportional to y5. So, to a very good approxima- 
tion, we can perform the averages ( f i i j U k / ) H D  over the five probabilities exp(-pHb) 
of finding the five possible neutral pairs of dislocations. Substituting into (2.5a) the 
explicit form for R, b, and d,, we find that the probability of finding a pair with 
Burgers’ vector 6, and -6, at a separation R is 

P,(R)=exp(-PH;5)= y2 exp { - [(-a + 9 w - 35) cos2 

-2(12W-S)c0s4 (2.12) 
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where h? = Mai/k,T and so on for fi, and s. In writing (2.12) we have ignored 
all multiplicative constants as they are absorbed into normalising the probabilities. 

The average ( fii,fik,)H,, involves integrating E,, f ivf ikfP, , (R)  over all values of R, 
i.e. over all possible separations of dislocations. The angular integral is well behaved; 
the integral over R = \RI, however, has infrared divergences. We handle these divergen- 
ces by breaking up the integral into two parts (Nelson and Halperin 1979): 

“ d R  ““‘dR O0 dR I, 7 1. a.I... a (2.13) 

where S is small. The contributions from the small R are absorbed into a redefinition 
of the bare elastic constants in c$$. Physically, the redefinitions of the elastic constants 
correspond to including the effects of screening due to those pairs whose separations 
are less than ue’. Equivalently, it corresponds to increasing the core size from a to 
ue6. To complete the renormalisation group transformations, we rescale the large R 
integrals, so that they again range from a to 03. The rescaling factor is absorbed into 
a redefinition of the fugacity y.  The expression we thus find for c$& from (2.8) has 
the same form as (2.8) with the redefined elastic constants replacing the bare ones in 
$;if. We repeat this procedure many times such that S = I ,  where I is a macroscopic 
length; each time $ill( I - 8 )  is replaced by 4$(I) and y(  Z - 6)  by y ( I )  following five 
recursion relations for the five independent components of 6-l (cf (2.9)) and one 
recursion relation for the fugacity. These relations are 

=y’(I)[0.625Pl(I)+ 1.25P2(l)] 

) =y2(I)[-0.625P,(I)+ 1.25P2(I)] K(1) 
2[@( I ) [K, (  I )  + E,( Z ) ]  - 2R;( I ) ]  

where 

p ,  = Jo2‘ d e P ( e )  P2 = de sin2 BP( e) 

with 

P( e)  = exp{-[( -A? + 9 W- 35)  COS’ e - 2( 12 W - 5) cos4 e + 16 W cos6 e]}. 

PI and P2 incorporate the results of the well behaved angular integrals. 

( 2 . 1 4 ~ )  

(2.14b) 

( 2 . 1 4 ~ )  

(2.14d ) 

(2.14e) 

(2.14f) 

( 2 . 1 5 ~ )  

(2.15 b )  



Defect-mediated melting of pentagonal quasicrystals 1173 

In studying (2.14) we first note that the five recursion relations for the elastic 
constants satisfy the stability conditions 

P ( I ) > O  P ( I )  + A ( 0  > 0 EL(wdl ) -K: (WO 

P(l)K2U)-K:(l)>O KI(0 - K2(0 > 0 (2.16) 

which preserve the positive-definiteness of HE (Levine et al 1985). We next note that 
the existence of a transition is obvious from ( 2 . 1 4 ~ ) .  Let us recall that y(1) is the 
probability of finding a neutral pair of dislocations whose separation is the core size 
ae’. According to (2.14a), if MR+ flR> 16.n, then y ( l ) + O  as I+w. This characterises 
the solid phase where all dislocations are still in pairs with finite separations. If, 
however, MR+ NR < 1 6 ~ ,  y( I )  -a as I + a; this describes the phase containing 
unbound dislocations. The transition temperature T, is the temperature at which 
MR+ flR = 16.n. This condition implies that, regardless of the values of the bare elastic 
constants, the value of the constants at T, obey a universal constraint 

lim MR(T)+NR(T)= 16.nkBT,/ag (2.17) 
T+ Tz 

where MR and NR are obtained from (2.6b, c )  by replacing the bare quantities by their 
renormalised counterparts. 

The physically measurable quantities such as /iR are solutions to the renormalised 
group equations (2.14) in the limit 1 + 00, i.e. 

j i R  = lim / iR(  I) (2.18) 
1-x 

and likewise for the remaining elastic constants. These solutions can be obtained by 
integrating (2.14) numerically. We find that in the solid regime, i.e. if A?,+ flR> 16.n, 
y(Z-am) = O .  For M R + N R < 1 6 r ,  y(Z-aW) grows rapidly and each of the elastic 
constants p R ,  A R ,  KIR, K2R and K3R approach vanishingly small constants. 

2.2. Critical exponents 

Critical exponents describe the approach of physical quantities to their values at the 
transition as T +  T,. The manner in which the elastic constants approach their 
renormalised values as T+ T, is described by the critical exponent v. Following 
arguments similar to those of Nelson and Halperin (1979) for the hexagonal lattice, 
it is straightforward to show that v =f. This implies that, if /i” is the value of /iR at 
T,, then, as T + T,, 

/ i R (  T)  = / i*(1 -C\t)’’*) (2.19) 

where t = ( T  - T,)/ T, is the reduced temperature and c is a non-universal constant. 
That v = f is a consequence of the fact that the recursion relations for the coupling 
constants are proportional to y2 while that of the fugacity is proportional to y (Young 
1979). It then follows that all the remaining elastic constants hR,  el^, and E,, 
exhibit the same cusplike singularity as in (2.19). 

The critical exponent v also characterises the behaviour of the correlation length 
6 above T,, which characterises the exponential decay of the transitional order as 

C d r )  - exp(-r/S) T >  T,. (2.20) 
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Again, using arguments similar to those in Nelson and Halperin (1979), it is straightfor- 
ward to show that, as T + T:, the correlation length 6 diverges as 

6 - exp( 1 (2.21) 

The behaviour of the Debye-Waller correlation function C,(r) below T, is defined 
in (1 .54  in terms of the critical exponent rlc .  As T -j T i ,  we find that rlC, approaches 
a non-universal constant: 

- 1 6 ~  sin2(47/5) - 
25[(2fi*+);*)KT -KT'](fi*KT -ET2) 
x {[(2/ i*+h*)Kf  - R;2] (KT+/ i*72)+  ( / i*KT - K T 2 )  

x [KT + (2/i* + / i - * ) T 2 ] }  (2 .22)  

where f i *  is /ZR(T,) and likewise for the remaining elastic constants. We note that, 
unlike in the case of hexagonal lattice (Nelson and Halperin 1979), 71:" has no upper 
bound; since KT can be arbitrarily close to zero, ~ z ,  can be arbitrarily large. 

3. Disclination-unbinding transition 

3.1. Orientational order below and above T, 

Orientational order is reflected by the correlation function C,(r) defined in ( 1 . 6 ~ ) .  
Below T,, the average ($(r)$*(O))  is evaluated over the total elastic energy HE, defined 
in (2.1). Performing an average over HE is equivalent to performing one over Ho but 
with the replacement of all bare elastic constants by their renormalised values. This 
average is easily evaluated upon substituting the explicit form for $ ( r )  as defined in 
(1.6b) and we find that, for large r, 

where A is an untraviolet cutoff. For T < T,, stability requires that KIR( T )  > 0 and 
pR(  T)KIR( T )  - K:R( T )  > 0 (Levine et a1 1985); thus 

($(r)$*(O))-constant (3.2) 

indicating true long-range orientational order for T < T,. 
For temperatures above T,, the behaviour of ($(r)$*(O)) is determined by the 

effect of a gas of unbound dislocations on orientational fluctuations. If any residual 
orientational order persists, one would expect the energy associated with its fluctuations 
to be of the form (Nelson and Halperin 1979) 

He = i K ( T )  d2rl~O(r)12. (3.3) 

k B T / K  = lim ( q 2 / Q ) ( i ( q ) i ( - q ) )  (3.4) 

I 
If we consider only the long-wavelength fluctuations of e( r )  then 

q-to 
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where $ ( q )  is the Fourier transform of the bond-angle field O(r) defined in (1.12b). 
Any smooth displacement fields will not contribute to the average in (3.4); the rotations 
induced by isolated dislocations, however, will. In our earlier work (De and Pelcovits 
1987a) we have presented the displacement fields due to a single dislocations at the 
origin with Burgers’ vector b’ = (b,, by,  d,., d y ) .  Calculating e( r )  from these displace- 
ment fields, we find the bond-angle field 6(r) due to a single dislocation at the origin. 
We can trivially generalise this to find the rotation field due to an arbitrary distribution 
of dislocations; the Fourier transform of the field is 

where (6,, &, i,., Jy)  is the Fourier transform of the four-dimension Burgers’ vector 
field 6(r) = (b(r)O d(r)). The two two-component fields b and d are not independent 
quantities (Levine et a1 1985). For a given b, we can parametrise d as 

b,( b: - 3 b t )  by(3b: - b:) 
d=( b2 ’ b’ (3.6) 

If we use this relation in conjunction with ( 3 3 ,  the expression in (3.4) expands as 

( 3 . 7 ~ )  

The averages in (3.7) are to be performed over the interaction energy of an arbitrary, 
not necessarily charge-neutral, distribution of dislocations. This energy is presented 
in De and Pelcovits (1987a). To perform the averages, we Fourier transform the 
interaction Hamiltonjan and calculate the averages using Debye-Huckel theory, which 
amounts to treating b ( q )  as a vector of continuous length (Nelson and Halperin 1979). 
For the sake of simplification, we note that our interest is in evaluating k , T / K  for 
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T > T, since we already know that, for T < T,, long-range orientational order persists. 
For T >  T,, we substitute for the elastic constants in (3.7a) their renormalised values 
at T,. Upon numerically integrating the renormalisation group equation (2.14) we 
have determined that KIR( T,) = K2R( T,) = K3R( T,) = 0. Thus, for T >  T,, 

(3.7b) 

In performing the average, we likewise set K ,  = K 2  = K ,  = 0 into the expression for 
HD, obtaining thus the simple results that, for T >  T,, 

K = 2E,ai (3.8) 

where E, is the core energy of a dislocation and is defined in De and Pelcovits (1987a). 
This establishes that orientational order does persists above T,. 

Having determined the value of K, it is straightforward to evaluate ( + ( r ) $ * ( O ) )  for 
T >  T,, where performing the average over HB in (3.3) gives 

(+(r )+*(O)) - -  r-”’O (3.9) 

where 

(3.10) 

3.2. Second transition 

The algebraic decay of the orientational order above T, does not persist indefinitely. 
As the temperature is raised, screening due to increasing numbers of 172” pairs of 
disclinations lead to a temperature T, at which the pairs with the largest separation 
dissociate. 

The total elastic energy in the presence of neutral pairs of disclinations can, as in 
the case of dislocations, be written as a sum: 

(3.11) 

where we have decomposed the bond-angle field into a smoothly varying part 4 and 
a multivalued part due to disclinations whose contribution to the elastic energy is Hf,. 

Minimising the free energy density 

f = b K  [(g)2+($)2] (3.12) 

we find that, in the presence of disclinations, the bond-angle field satisfies 

K,v2e = o (3 .13~)  

for regions away from the core of a disclination while around the core, e ( r )  satisfies 
(De and Pelcovits 1987b) 

de( r )  = 2 ~ s / 1 0  s=11,*2 ,  ... . (3.136) f 
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Solutions that satisfy (3.13) are easily obtained using the techniques outlined in De 
and Pelcovits (1987a) and we find that the energy due to such fields is 

H L =  
100 a i  a i  (3.14) 

where E ;  is the core energy of a disclination. 
In De and Pelcovits (1988) we have presented the general expression for H L  when 

T <  T,, i.e. in the presence of bound pairs of dislocations. It is worth noting that, in 
contrast to the latter energy, which increases as R 2  In R where R is the size of the 
system, the energy in (3.14) has a weaker In R dependence. This reduction in the 
interaction strength is due to the screening of disclinations by a gas of unbound 
dislocations. 

The total energy Hf, in (3.11) is isomorphic to energy of spins in the XY model 
(Kosterlitz 1974). The results of that case are thus immediately reinterpreted as follows. 
The transition occurs at a temperature T, such that 

Tlo(T i )  =$ (3.15) 

which implies that 

lim K (  T) = 100k,T,/.rr. 
T- 1; 

(3.16) 

For T > T,, the orientational correlation function decays exponentially: 

(rL(r)rL*(O) - exp(-r/&) (3.17) 

with the correlation length diverging as 

to - exp(c( T - Til-*’2) (3.18) 

where c is a non-universal constant. 
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